Fluid phase interface properties of acetone, oxygen, nitrogen and their binary mixtures by molecular simulation.

نویسندگان

  • Stefan Eckelsbach
  • Jadran Vrabec
چکیده

Vapor-liquid equilibria (VLE) of the pure substances acetone, oxygen and nitrogen as well as their binary mixtures are studied by molecular dynamics (MD) simulation with a direct approach. Thereby, particular attention is paid to the interface behavior on the molecular level, yielding total and partial density profiles as well as surface tension data. The classical approach by van der Waals is used to analyze the total density profiles. It is found that an extended function is needed to describe those profiles for the mixtures containing acetone, due to the strong adsorption of the volatile component at the vapor side of the interface. Based on these representations the interface thickness is studied. The surface tension results are compared to experimental data, correlations thereof and results from other molecular approaches. Due to the scarcity of experiments, the parachor method is employed to obtain predictive surface tension data for the mixtures. Following the same approach, the present surface tension results are correlated for the mixtures containing acetone.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental Investigations on the Thermal Performance of a Vertical Closed Loop Pulsating Heat Pipe Using Binary Mixture of Fluids

This paper presents the experimental investigations conducted on a vertical closed loop pulsating heat pipe (VCLPHP) to evaluate the thermal performance. The values of thermal resistance and heat transfer coefficient obtained in the experimentation is used as evaluation parameters. The VCLPHP used has capillary tubes having an inner diameter of 2mm and outside diameter 3mm and bent into 5 turns...

متن کامل

Investigation of laser induced phosphorescence properties of acetone

An experimental investigation of the phosphorescence properties of liquid and vapour acetone is presented with the goal of introducing a novel technique for improved two-phase flow visualization. Commonly applied laser induced fluorescence (LIF) investigations of two-phase flows are challenging, in particular because of the large disparity in fluorescence intensity between the two phases and th...

متن کامل

Properties of the liquid-vapor interface of acetone-methanol mixtures, as seen from computer simulation and ITIM surface analysis.

Molecular dynamics simulations of the liquid-vapor interface of acetone-methanol mixtures of different compositions, including the two neat systems, have been performed on the canonical (N,V,T) ensemble at 293 K. The intrinsic liquid surface has been determined in terms of the Identification of the Truly Interfacial Molecules (ITIM) method. The results have revealed that the proximity of the in...

متن کامل

Molecular modeling of phase behavior and microstructure of acetone-chloroform-methanol binary mixtures.

Force fields based on a Lennard-Jones (LJ) 12-6 plus point charge functional form are developed for acetone and chloroform specifically to reproduce the minimum pressure azeotropy found experimentally in this system. Point charges are determined from a CHELPG population analysis performed on an acetone-chloroform dimer. The required electrostatic surface for this dimer is determined from ab ini...

متن کامل

Measurement of Volumetric and Viscometric Properties of Binary Mixtures of Methyl Tert-butyl Ether (MTBE) + 1-Alcohol from 293.15 to 308.15 K and at Atmospheric Pressure

Densities and viscosities of binary mixtures of methyl tert-butyl ether (MTBE) with 1-alkanols include 1-butanol, or +1-pentanol, or +1-hexanol, or +1-heptanol were measured as a function of composition from 293.15 to 308.15 K at atmospheric pressure. The temperatures studied were 293.15, 298.15, 303.15 and 308.15 K. The experimental results have been used to calculate the viscosity de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 17 40  شماره 

صفحات  -

تاریخ انتشار 2015